# 基于磁力计、IMU和单目视觉的自主定位方法

樊建彪<sup>1,2</sup>,孙 剑<sup>1,2</sup>,樊欢欢<sup>1,2</sup>,陈 伟<sup>1,2</sup>

(1. 西安交通大学航天航空学院, 西安 710049;

2. 西安交通大学机械结构强度与振动国家重点实验室, 西安 710049)

摘 要:基于单目视觉与惯性测量单元 (IMU) 融合的 SLAM (simultaneous localization and mapping) 技术,具有硬件成本低、体积小和消耗计算资源少等优点,在移动机器人导航系统中得到了广泛的应用。单目视觉 SLAM 系统主要通过求解对极几何来解算位姿,但当平移为零时 (仅存在姿态旋转运动),存在解算漂移的问题。通过将磁力计的数据融合到单目视觉 SLAM 算法中,不但可以解决纯旋转情况下姿态解算漂移问题,还可以提高解算精度。物理仿真实验的 结果表明,与传统的 SLAM 算法相比,本文提出的基于磁力计、IMU 和单目视觉融合的算法具 有精度高、鲁棒性好的优点。

关键词: 自主定位; 磁力计; 单目视觉 SLAM; IMU 中图分类号: TP391.9 文献标志码: A 文章编号: 2096-4080 (2019) 06-0039-07

## A Method of Autonomous Localization Based on Magnetometer, IMU, and Monocular Vision

FAN Jianbiao<sup>1,2</sup>, SUN Jian<sup>1,2</sup>, FAN Huanhuan<sup>1,2</sup>, CHEN Wei<sup>1,2</sup>

 School of Aerospace, Xi'an Jiaotong University, Xi'an 710049, China; 2. State Key Laboratory for Strength and Vibration of Mechanical Structures, Xi'an Jiaotong University, Xi'an 710049, China)

Abstract: SLAM (simultaneous localization and mapping) algorithm based on monocular vision and IMU has been widely used in mobile robot navigation systems, due to low hardware cost, small size, and low computational resource consumption. The Mono SLAM system can calculate the robot pose information by solving the Epipolar geometry. However, when the translation of the robot is zero (pure rotation), the solution will drift. In this paper, we propose a new method that integrates the data of the magnetometer into the monocular vision SLAM algorithm, which can not only solve the problem of the attitude solution drift under pure rotation but also improve the solution accuracy. Both simulation and real experiment results show that, compared with the traditional SLAM algorithm, the proposed algorithm has the advantages of high precision and good robustness.

Key words: Autonomous localization; Magnetometer; Mono SLAM; IMU

收稿日期: 2019-08-13; 修订日期: 2019-10-21

**基金项目:** 装发领域基金(61404150303)

作者简介: 樊建彪 (1995-), 男, 硕士, 主要研究方向为计算机视觉导航系统。

E-mail: fjb1615201974@stu. xtu. edu. cn

#### 0 引言

近年来,随着社会发展和科技技术的进步, 移动机器人越来越多地应用于日常生活中。导航 技术不仅是移动机器人的核心技术,同时也是移 动机器人自主完成任务的基础。目前移动机器人 的导航系统主要依靠 GPS(全球定位系统)与 IMU进行融合解算位姿信息,而对于复杂环境此 方案无法保证 GPS 信号的实时性,同时 IMU 模块 的零偏会造成解算的位姿漂移,因此应用场景 有限。

SLAM (simultaneous localization and mapping) 技术依靠移动机器人自身携带的传感器对周围环 境进行观测,同时通过融合算法对各传感器的数 据进行处理,可以实时得到移动机器人在空间中 的位姿,不依赖于外部传感器信息,是实现机器 人在复杂环境下自主定位导航的关键技术。SLAM 技术于 20 世纪 80 年代被提出,经过几十年的发 展,已经产生多种成熟的 SLAM 算法。

目前主要的 SLAM 算法包括单目视觉 SLAM<sup>[1-5]</sup>、双目视觉 SLAM<sup>[6-8]</sup>、RGB-D 视觉 SLAM<sup>[9]</sup>和激光雷达 SLAM<sup>[10]</sup>。单目视觉 SLAM 系统仅需一台摄像头和一套低成本 IMU, 其体积 小、成本低、功耗小等优点引起了学术界和工业 界的极大兴趣。自从基于扩展卡尔曼滤波的 Mono-SLAM<sup>[11]</sup>算法被提出以后,单目视觉逐渐流 行起来。目前有众多的单目视觉解决方案,包括 PTAM<sup>[12]</sup>, SVO<sup>[13]</sup>, ORB-SLAM2<sup>[14]</sup>, MSCKF<sup>[15]</sup> 和 VINS-SLAM<sup>[16]</sup>等。这些方案主要是基于滤波 器或者优化器来融合 IMU 和视觉传感器数据对位 姿进行解算。而目前的单目视觉 SLAM 算法主要 是依靠 IMU 数据来解决单目视觉解算过程中的尺 度问题,但 IMU 存在漂移,其尺度解算精度不 高。同时单目视觉 SLAM 算法主要依靠单目视觉 数据进行优化得到位姿信息,但是当运动为纯旋 转时,则无法通过求解对极几何来求解机器人的 姿态角。该算法在实际应用中存在位姿解算漂移 的问题,同时解算精度不高。

通过将三维磁阻传感器按照载体坐标系安装, 磁力计可测量载体空间磁场的三维磁感应强度, 据此可以计算出载体的姿态角。因此本文首次提 出了基于磁力计、IMU 和单目视觉传感器融合的 位姿解算方法,用来对视觉尺度因子、重力、速 度、IMU 参数和载体姿态进行估计,解决单目视 觉在解算位姿时由于纯旋转情况而出现的不稳定 情况,同时本方案具有高精确和强鲁棒的特性。

## 1 算法设计

本文通过融合磁力计、IMU 和单目视觉传感 器数据,设计能够在三维空间中实时估计移动机 器人位姿的算法。所设计的扩展卡尔曼滤波器将 磁力计和 IMU 数据进行融合,解算出机器人的姿 态并对陀螺仪零偏进行了估计,之后用陀螺仪的 零偏估计量修正陀螺仪数据,同时将估计的姿态 量用于加速度计的积分,从而得到机器人的位置 量。通过单目视觉传感器解算对极几何和 PnP 计 算位置信息。通过图优化算法融合 IMU 计算的位 置残差和单目视觉计算的残差,得到移动机器人 的位置状态和加速度计的零偏量。用计算得到的 加速度计的零偏修正加速度计数据。至此就可以 估计出移动机器人的位置和姿态状态。算法流程 如图 1 所示。



Fig. 1 Flow chart of algorithm

图 1 中, **b**<sub>w</sub> 和 **b**<sub>a</sub> 分别表示通过算法估计出来 的陀螺仪零偏量和加速度计零偏量。通过对 IMU 中各传感器的零偏进行修正,可以得到更加精确 的位姿信息并提高系统的鲁棒性。

#### 1.1 磁力计与 IMU 卡尔曼姿态估计器

1.1.1 IMU 传感器特性

IMU 传感器包括三轴陀螺仪和三轴加速度计, 可以测量高频的角速度和线加速度数据。但是, IMU 的测量数据中包含两种测量误差,即测量噪 声和零偏。测量噪声是高斯白噪声,零偏服从高

斯随机游走。因此 IMU 的测量模型如式 
$$(1)$$
:

$$\boldsymbol{w}_{t}^{b} = \boldsymbol{w}_{t}^{b} + \boldsymbol{b}_{wt} + \boldsymbol{n}_{w}$$
$$\tilde{\boldsymbol{a}}_{t}^{b} = \boldsymbol{a}_{t}^{b} + \boldsymbol{b}_{at} + \boldsymbol{R}_{w}^{t}\boldsymbol{g}^{w} + \boldsymbol{n}_{a}$$
(1)

式中, $\tilde{w}_{t}^{b}$  和 $\tilde{a}_{t}^{b}$  为在载体坐标系下测量的角速度和 线加速度, $w_{t}^{b}$  和 $a_{t}^{b}$  为需要估计的角速度和线加速 度的真值。在陀螺仪测量模型中, $b_{w}$  和 $n_{a}$  分别为 陀螺仪的零偏和测量噪声, $n_{a}$  服从高斯分布, $b_{w}$ 服从高斯随机游走; $b_{a}$  和 $n_{a}$  分别为加速度计的零 偏和测量噪声, $n_{a}$  服从高斯分布, $b_{a}$  服从高斯随 机游走。

1.1.2 基于卡尔曼滤波器的姿态解算算法

建立基于非线性卡尔曼滤波器的姿态解算算法,其状态方程和量测方程<sup>[17]</sup>如下

$$\dot{\mathbf{X}} = F(\mathbf{X}, \boldsymbol{\omega}) + \mathbf{W}$$
$$\mathbf{Z} = h(\mathbf{X}) + \mathbf{V}$$
(2)

式中,状态向量  $X = [q_0, q_1, q_2, q_3, b_{wx}, b_{wy}, b_{wz}]$ ,分别表示四元数和陀螺仪的偏差,W为系统噪声,服从高斯分布;V为测量噪声,服从高斯分布,四元数微分方程为

$$\dot{\boldsymbol{q}} = \frac{1}{2} \boldsymbol{q} \otimes (\boldsymbol{\omega} + \boldsymbol{b}_w)$$

对上式进行离散化可以得到如下状态转移方程

$$\boldsymbol{X}_{\boldsymbol{K}+1} = \boldsymbol{A}_{\boldsymbol{K}} \boldsymbol{X}_{\boldsymbol{K}} \tag{3}$$

式中

| $A_{1}$ | $\mathbf{K} = (\mathbf{j}$ | I + TF      | I = I       | +           |                  |              |               |
|---------|----------------------------|-------------|-------------|-------------|------------------|--------------|---------------|
|         | 0                          | $-\omega_x$ | $-\omega_y$ | $-\omega_z$ | $q_{1K}$         | $q_{2K}$     | $q_{_{3K}}$ - |
|         | $\omega_x$                 | 0           | $\omega_z$  | $-\omega_y$ | $-q_{_{0K}}$     | $q_{_{3K}}$  | $-q_{2K}$     |
| Т       | $\omega_y$                 | $-\omega_z$ | 0           | $\omega_x$  | $-q_{_{3K}}$     | $-q_{_{0K}}$ | $q_{1K}$      |
|         | $\omega_z$                 | $\omega_y$  | $-\omega_x$ | 0           | $q_{_{2K}}$      | $-q_{1K}$    | $-q_{_{0K}}$  |
|         | $0_{3\times 4}$            |             |             |             | $0_{3 \times 3}$ |              | _             |

 $X_{\kappa}(i) = q_i, i = 0, 1, 2, 3$ 。T 为 IMU 传感器数据采 集时间间隔。

对于加速度的测量数据可以通过方向余弦矩 阵进行估计,其中假设重力加速度为常数 |g|, 可以根据式(4) 得到加速度计在载体坐标下的测 量方程。

$$h_{a}(\mathbf{X}) = \hat{\mathbf{g}} = \mathbf{R}_{w}^{b} \begin{bmatrix} 0\\0\\|g| \end{bmatrix} = |g| \begin{bmatrix} 2q_{1}q_{3} - 2q_{0}q_{2}\\2q_{0}q_{1} + 2q_{2}q_{3}\\q_{0}^{2} - q_{1}^{2} - q_{2}^{2} + q_{3}^{2} \end{bmatrix}$$
(4)

式中

$$R^{b}_{w} =$$

$$\begin{bmatrix} q_{0}^{2} + q_{1}^{2} - q_{2}^{2} - q_{3}^{2} & 2q_{1}q_{2} + 2q_{0}q_{3} & 2q_{1}q_{3} - 2q_{0}q_{2} \\ 2q_{1}q_{2} - 2q_{0}q_{3} & q_{0}^{2} - q_{1}^{2} + q_{2}^{2} - q_{3}^{2} & 2q_{2}q_{3} + 2q_{0}q_{1} \\ 2q_{1}q_{3} + 2q_{0}q_{2} & 2q_{2}q_{3} - 2q_{0}q_{1} & q_{0}^{2} - q_{1}^{2} - q_{2}^{2} + q_{3}^{2} \end{bmatrix}$$

$$(5)$$

通过视觉和 IMU 优化模块中式(17)可以得 到优化后加速度计的零偏估计并对加速度计进行 修正,因此修正后的测量值为

 $\mathbf{Z}_{K+1}^{a} = [\tilde{a}_{x} - \hat{b}_{ax}, \tilde{a}_{y} - \hat{b}_{ax}, \tilde{a}_{z} - \hat{b}_{ax}]^{T}$ 其中,  $\tilde{a}$  为加速度计的测量数值,  $\hat{b}_{a}$  为式 (17) 得 到的加速度计零偏估计量。

磁力计的测量方程与加速度计测量方程相同。 对磁场进行归一化,并假设其指向 y 轴。磁力计 的测量方程见式(6)

$$h_{m}(\mathbf{X}) = \hat{\mathbf{m}} = \mathbf{R}_{w}^{b} \begin{bmatrix} 0\\1\\0 \end{bmatrix} = \begin{bmatrix} 2q_{1}q_{2} + 2q_{0}q_{3}\\q_{0}^{2} - q_{1}^{2} + q_{2}^{2} - q_{3}^{2}\\2q_{2}q_{3} - 2q_{0}q_{1} \end{bmatrix}$$
(6)

通过磁力计可以直接测量到地磁场的数据, 进行归一化可以得到磁力计的测量数据  $Z_{K+1}^{m} = [m_x, m_y, m_z]^{T}$ 

根据式(2)~(6)所得到的状态方程和测量方程进行卡尔曼更新,求解后验状态估计和后验状态协方差矩阵见式(7):

$$\hat{\boldsymbol{X}}_{k+1} = \hat{\boldsymbol{X}}_{K+1}^{-} + \boldsymbol{K}_{K+1} (\boldsymbol{Z}_{K+1} - h(\hat{\boldsymbol{X}}_{K+1}^{-}))$$
$$\boldsymbol{P}_{k+1}^{a} = (\boldsymbol{I} - \boldsymbol{K}_{K+1}^{a} \boldsymbol{H}_{K+1}^{a}) \boldsymbol{P}_{k+1}^{-}$$
(7)

根据状态估计量 **X**<sub>k+1</sub> 和式(5) 就可以求解出 旋转矩阵,同时根据估算出的陀螺仪零偏对陀螺 仪数据进行修正。

#### 1.2 基于视觉传感器和 IMU 的非线性图优化

1.2.1 IMU测量残差

首先对 IMU 的测量数据进行积分,为 IMU 的残差计算提供约束关系。在给定的两帧连续图 像 $b_k$ 和 $b_{k+1}$ 之间,可以通过加速度计、陀螺仪的 测量数据和式(7)中解算的姿态角和陀螺仪偏差估 计值计算 $b_{k+1}$ 帧时刻的位置,速度和姿态角信息, 见式(8)<sup>[16]</sup>:

$$\mathbf{P}_{b_{k+1}}^{w} = \mathbf{P}_{b_{k}}^{w} + \mathbf{V}_{b_{k}}^{w} \Delta t_{k} + \iint_{t \in [t_{k}, t_{k+1}]} (\mathbf{R}_{t}^{w} (\tilde{\boldsymbol{a}}_{t} - \boldsymbol{b}_{at}) - \boldsymbol{g}^{w}) dt$$
$$\mathbf{V}_{b_{k+1}}^{w} = \mathbf{V}_{b_{k}}^{w} + \int_{t \in [t_{k}, t_{k+1}]} (\mathbf{R}_{t}^{w} (\tilde{\boldsymbol{a}}_{t} - \boldsymbol{b}_{at}) - \boldsymbol{g}^{w}) dt$$
$$\boldsymbol{q}_{b_{k+1}}^{w} = \boldsymbol{q}_{b_{k}}^{w} \otimes \int_{t \in [t_{k}, t_{k+1}]} \frac{1}{2} \Omega(\tilde{\boldsymbol{w}}_{t} - \boldsymbol{b}_{wt}) \boldsymbol{q}_{t}^{b_{k}} dt$$
(8)

式中,
$$\Omega(\omega) = \begin{bmatrix} -|w| \times w \\ -w^{\mathrm{T}} & 0 \end{bmatrix}$$
,  $|w| \times$ 如下所示

宇航总体技术

$$|\mathbf{w}| \times = \begin{bmatrix} 0 & -w_z & w_z \\ w_z & 0 & -w_x \\ -\omega_y & \omega_x & 0 \end{bmatrix}$$

 $\Delta t_k$ 表示连续两帧图像间[ $t_k$ ,  $t_{k+1}$ ]的时间间隔。上标 w 表示由第一帧图像时刻所得位姿建立的世界坐标系。 $b_{at}$ 为通过式(7)估计的陀螺仪零偏量。 $\mathbf{R}_t^w$ 表示由式(5)和式(7)得到的四元数通过转换得到的旋转矩阵。由于需要求解 $b_k$ 和 $b_{k+1}之间的状态更新量,因此把参考坐标系从世界系转换到<math>b_k$ 帧的载体坐标系,可得到式(9):

$$\boldsymbol{R}_{w}^{b_{k}}\boldsymbol{P}_{b_{k+1}}^{w} = \boldsymbol{R}_{w}^{b_{k}} \left( \boldsymbol{P}_{b_{k}}^{w} + \boldsymbol{V}_{b_{k}}^{w} \Delta t_{k} - \frac{1}{2} \boldsymbol{g}^{w} \Delta t_{k}^{2} \right) + \boldsymbol{\alpha}_{b_{k+1}}^{b_{k}}$$
$$\boldsymbol{R}_{w}^{b_{k}} \boldsymbol{V}_{b_{k+1}}^{w} = \boldsymbol{R}_{w}^{b_{k}} \left( \boldsymbol{V}_{b_{k}}^{w} - \boldsymbol{g}^{w} \Delta t_{k} \right) + \boldsymbol{\beta}_{b_{k+1}}^{b_{k}}$$
$$\boldsymbol{g}_{w}^{b_{k}} \otimes \boldsymbol{g}_{w}^{w} = \boldsymbol{\gamma}_{b_{k}}^{b_{k}}. \tag{9}$$

式中

$$\boldsymbol{\alpha}_{b_{k+1}}^{b_k} = \iint_{t \in [t_k, t_{k+1}]} \boldsymbol{R}_t^{b_k} (\tilde{\boldsymbol{a}} - \boldsymbol{b}_{at}) dt^2$$
$$\boldsymbol{\beta}_{b_{k+1}}^{b_k} = \int_{t \in [t_k, t_{k+1}]} \boldsymbol{R}_t^{b_k} (\tilde{\boldsymbol{a}} - \boldsymbol{b}_{at}) dt$$
$$\boldsymbol{\gamma}_{b_{k+1}}^{b_k} = \int_{t \in [t_k, t_{k+1}]} \frac{1}{2} \Omega (\tilde{\boldsymbol{w}} - \boldsymbol{b}_{wt}) \boldsymbol{\gamma}_t^{b_k} dt \quad (10)$$

从式(10)可以看出,IMU 积分过程选择  $b_k$ 为参考坐标系,连续两帧图像之间的相对运动增 量  $\boldsymbol{\alpha}_{b_{k+1}}^{b_k}$ 、 $\boldsymbol{\beta}_{b_{k+1}}^{b_k}$ 、 $\boldsymbol{\gamma}_{b_{k+1}}^{b_k}$ 只与 IMU 传感器的零偏有 关,因此选择这 3 个变量作为积分的求解对象,可 以节省大量计算资源。

对于式(10)采用欧拉法进行离散处理求解 积分值,同时进行泰勒一阶近似。就可以计算得 到 $b_k$ 和 $b_{k+1}$ 之间的位移、速度和姿态角的增量, 如式(11)所示:

$$\boldsymbol{\alpha}_{b_{k+1}}^{b_k} \approx \hat{\boldsymbol{\alpha}}_{b_{k+1}}^{b_k} + J_{b_a}^{a} \boldsymbol{b}_{ak} + J_{b_w}^{a} \boldsymbol{b}_{wk}$$
$$\boldsymbol{\beta}_{b_{k+1}}^{b_k} \approx \hat{\boldsymbol{\beta}}_{b_{k+1}}^{b_k} + J_{b_a}^{\beta} \boldsymbol{b}_{ak} + J_{b_w}^{\beta} \boldsymbol{b}_{wk}$$
$$\boldsymbol{q}_{b_{k+1}}^{b_k} \approx \hat{\boldsymbol{q}}_{b_{k+1}}^{b_k} \otimes \begin{bmatrix} 1\\ \frac{1}{2} J_{b_w}^{\gamma} \boldsymbol{b}_{wk} \end{bmatrix}$$
(11)

b<sub>wk</sub> 为经过式(7) 解算得到的陀螺仪的零偏估
 计量。b<sub>ak</sub> 为加速度计的零偏估计量,初始值为
 0,然后通过式(17)进行更新。初始值α<sup>b<sub>k</sub></sup><sub>b<sub>k</sub></sub>和β<sup>b<sub>k</sub></sup><sub>b<sub>k</sub></sub>
 为 0,q<sup>b<sub>k</sub></sup><sub>b<sub>k</sub></sub> 为单位矩阵。其中雅克比矩阵为

$$J_{b_a}^{a} = \frac{\delta \boldsymbol{\alpha}_{b_{k+1}}^{b_k}}{\delta \boldsymbol{b}_{ak}}$$

同样可以计算  $J_{b_w}^{\mathfrak{g}}$ 、  $J_{b_w}^{\mathfrak{g}}$ 、  $J_{b_w}^{\mathfrak{g}}$  和  $J_{b_w}^{\mathfrak{g}}$ 。 至此, 就可以通过迭代完成两帧图像间位姿增量积分的 求解过程。 对于摄像机视频窗口内两个连续帧图像  $b_k$  和  $b_{k+1}$ 之间的 IMU 测量数据,根据式(9)~式 (11),IMU 积分过程的测量残差为<sup>[16]</sup>

$$r_{B}(\hat{\boldsymbol{z}}_{b_{k+1}}^{b_{k}},\boldsymbol{\chi}) = \begin{bmatrix} \partial \boldsymbol{\alpha}_{b_{k+1}}^{b_{k}} \\ \partial \boldsymbol{\beta}_{b_{k+1}}^{b_{k}} \\ \partial \boldsymbol{b}_{a} \\ \partial \boldsymbol{b}_{w} \end{bmatrix}$$
$$= \begin{bmatrix} \boldsymbol{R}_{w}^{b_{k}}(\boldsymbol{p}_{b_{k+1}}^{w} - \boldsymbol{p}_{b_{k}}^{w} + 0.5\boldsymbol{g}^{w}\Delta t_{k}^{2} - \\ \boldsymbol{v}_{b_{k}}^{w}\Delta t_{k}) - \boldsymbol{\alpha}_{b_{k+1}}^{b_{k}} \\ \boldsymbol{R}_{w}^{b_{k}}(\boldsymbol{v}_{b_{k+1}}^{w} - \boldsymbol{v}_{b_{k}}^{w} + \boldsymbol{g}^{w}\Delta t_{k}) - \boldsymbol{\beta}_{b_{k+1}}^{b_{k}} \\ 2[\boldsymbol{q}_{b_{k}}^{w-1} \otimes \boldsymbol{q}_{b_{k+1}}^{w} \otimes (\boldsymbol{\gamma}_{b_{k+1}}^{b_{k}})^{-1}]_{xyz} \\ \boldsymbol{b}_{ab_{k+1}} - \boldsymbol{b}_{ab_{k}} \\ \boldsymbol{b}_{wb_{k+1}} - \boldsymbol{b}_{wb_{k}} \end{bmatrix}$$
(12)

式中,  $[\cdot]_{xyz}$  表示四元数中的矢量部分, 代表状态 误差。 $\delta \theta_{b_{k+1}}^{b_k}$  为四元数状态误差的三维表示方式。  $[\alpha_{b_{k+1}}^{b_k}, \beta_{b_{k+1}}^{b_k}, \gamma_{b_{k+1}}^{b_k}]$  通过式(11)得到。至此, 就完成了 IMU 残差的求解过程。

1.2.2 视觉测量残差

根据针孔相机模型建立对极几何方程。通过 五点法求解本质矩阵,就可以解算出两帧图像之 间的旋转和带有尺度因子的位移信息。然后运用 三角法和 PnP 算法,恢复出滑动窗口内所有帧和 特征点对应的姿态和带尺度因子的位置。( $p_{a}^{w}$ ,  $q_{a}^{w}$ )上标 w 为世界坐标系, ck 表示第k 帧图像相机 坐标系。同时假设已经知道相机和 IMU 安装位置 的对应关系( $p_{c}^{b}$ ,  $q_{c}^{b}$ ),就可以通过单目视觉求解 出机器人的位姿信息,见式(13)<sup>[16]</sup>:

$$\boldsymbol{q}_{b_k}^w = \boldsymbol{q}_{ck}^w \bigotimes (\boldsymbol{q}_{c}^b)^{-1}$$

$$s\overline{\boldsymbol{p}}_{b_k}^w = s\overline{\boldsymbol{p}}_{ck}^w - \boldsymbol{R}_{b_k}^w \boldsymbol{p}_c^b$$
(13)

式中, *s* 为待求的尺度因子, 表示与实际移动距离 尺寸相关的缩放比例。

定义单目视觉在图像平面上的重投影误差, 通过将第*i*帧图像中观测到的特征点*n*重投影到第 *j*帧图像中,则视觉测量残差为

$$r_{C}\left(\hat{\boldsymbol{z}}_{n}^{cj},\boldsymbol{\chi}\right) = \left(\hat{\boldsymbol{C}}_{n}^{cj} - \frac{\boldsymbol{C}_{n}^{cj}}{\|\boldsymbol{C}_{n}^{cj}\|}\right)$$
(14)

式中,  $\hat{\vec{C}}_{n}^{c_{i}} = \begin{bmatrix} \hat{u}_{n}^{c_{i}} \\ \hat{v}_{n}^{c_{i}} \end{bmatrix}$ 为特征点*n*在第*j*帧图像平面上的投影。根据式 (13) 及相机投影关系可得

式中,  $\begin{bmatrix} u_n^{\alpha} \\ v_n^{\alpha} \end{bmatrix}$  为特征点 *n* 在第*i* 帧图像平面上的

投影。

1.2.3 图优化状态方程

定义需要优化的状态向量如下

由式 (12) 和 (14) 定义代价函数为  $\min_{\mathbf{X}} \{ \sum_{k \in \mathbf{B}} \| \mathbf{r}_{\mathbf{B}}(\hat{\mathbf{z}}_{b_{k+1}}^{b_{k}}, \mathbf{X}) \|^{2} + \sum_{k \in \mathbf{C}} \| \mathbf{r}_{\mathbf{C}}(\hat{\mathbf{z}}_{n}^{cj}, \mathbf{X}) \|^{2} \}$  (17) 式中, **B** 为所有 IMU 测量数据的集合, **C** 为解算关 键帧内所有图像特征点的集合。通过 Ceres Solver 优化器,对式 (17) 求解最小二乘问题,就可以 得到位置估计量、陀螺仪和加速度计零偏。至此, 完成了由视觉和 IMU 传感器求解位置的过程。

#### 2 实验结果

#### 2.1 实验平台

实验平台采用 optor 惯性相机、Pixhawk 飞控 硬件和深圳玩智商科技有限公司生产的 Dashgo D1 移动机器人平台。optor 惯性相机带有一个 MPU-6050 模块,集成了三轴陀螺仪和三轴加速度计, 还带有两个 30fps、分辨率为 752×480 的摄像头。 用 Pixhawk 飞控中的 HMC5883L 三轴磁力计采集 地磁场数据。Dashgo D1 移动机器人的移动精度低 于 1%,作为移动平台验证算法的移动精度和旋转 精度。所有传感器都通过 USB 连接到 NUC 机载 电脑上,进行数据采集,并在机载电脑上运行算 法进行位姿估计,如图 1 所示。

### 2.2 实验结果

通过 Dashgo D1 移动机器人搭载实验设备在 室内分别沿着 XY 轴直线运动 15m 和绕 z 轴旋转 360°,分别运行本文算法和 VINS-SLAM 算法,进 行实验并记录实验数据。将本文算法解算结果和 当前解算精度高的 VINS-SLAM 算法解算结果进



图 2 实验平台 Fig. 2 Experimental platform

## 行对比。

首先进行沿 XY 轴直线运动的实验,使移动 机器人以 0.05m/s 的速度分别沿着 XY 轴直线勾 速移动 15m。记录并对比本文算法和 VINS-SLAM 算法解算结果的误差。实验结果如图 3~图 6 所 示,横轴表示时间,纵轴表示移动距离。



Fig. 3 X-axis experiment results









Fig. 6 Y-axis experimental error

将 Dashgo D1 移动机器人绕 z 轴按 2°/s 匀速 旋转 360°进行 Yaw 姿态角解算实验。记录并对比本 文算法和 VINS-SLAM 算法解算结果的误差,如 图7、图8所示。



Fig. 7  $Y_{aw}$  experiment results



从图(8)可以看出,由于 VINS-SLAM 算法 只用 IMU 和单目视觉进行位姿解算,在纯旋转的 情况下,当旋转180°后由于此时视觉传感器无法 解算对极几何而解算失效,此时只依赖陀螺仪积 分进行姿态解算,就会出现姿态解算漂移。而本 文算法主要依靠磁力计和 IMU 进行姿态解算,有 效避免了单目视觉 SLAM 算法中存在的姿态解算 漂移的问题。

表1 实验误差结果 Tab. 1 Experimental error

| 误差        | $X$ ${ m m}/{ m m}$ | Y 轴/m | $Y_{ m aw}$ 角/(°) |
|-----------|---------------------|-------|-------------------|
| 本文算法      | 0.4                 | 0.37  | 4.8               |
| VINS-SLAM | 0.78                | 0.76  | 48.5              |

通过表 1 对比本文算法与不使用磁力计的 VINS-SLAM 算法可以看出,本文算法通过使用磁 力计使位置解算误差降低到 0.4m 以内。而解算的 姿态角克服了 VINS-SLAM 算法中由于纯旋转情 况而产生的漂移问题,并且解算精度在5°以内。

#### 3 结论

本文首次将磁力计、单目视觉和 IMU 传感器 数据进行融合,解算移动机器人位姿状态,并通 过实验对设计的算法进行验证,与 VINS-SLAM 单目视觉算法进行对比。实验结果表明,所设计 的基于磁力计、IMU 和单目视觉的自主定位算法, 不但提高了移动机器人的位姿解算精度,同时也 克服了现有的单目视觉 SLAM 算法在纯旋转情况 下姿态角解算漂移的问题。本算法由于只使用磁 力计、IMU 和单目摄像头,具有质量小、成本低、 消耗计算资源少等优点,因此可广泛应用于小型 移动机器人的自主导航系统中。

#### 参考文献

- [1] Shen S, Mulgaonkar Y, Michael N, et al. Initialization-free monocular visual-inertial state estimation with application to autonomous MAVs [C]. Experimental Robotics, Springer, Cham, 2016: 211-227.
- [2] Shen S, Michael N, Kumar V. Tightly-coupled monocular visual-inertial fusion for autonomous flight of rotorcraft MAVs [C]. 2015 IEEE International Conference on Robotics and Automation (ICRA), IEEE, 2015: 5303-5310.
- [3] Faessler M, Fontana F, Forster C, et al. Automatic re-initialization and failure recovery for aggressive flight with a monocular vision-based quadrotor [C].
  2015 IEEE International Conference on Robotics and Automation (ICRA), IEEE, 2015; 1722-1729.
- [4] Yang Z, Shen S. Monocular visual-inertial state estimation with online initialization and camera-IMU extrinsic calibration [J]. IEEE Transactions on Automation Science and Engineering, 2016, 14 (1): 39-51.
- [5] Bloesch M, Omari S, Hutter M, et al. Robust visual inertial odometry using a direct EKF-based approach
  [C] . 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), IEEE, 2015: 298-304.
- [6] Leutenegger S, Lynen S, Bosse M, et al. Keyframebased visual-inertial odometry using nonlinear optimization [J]. The International Journal of Robotics Research, 2015, 34 (3): 314-334.
- [7] Ling Y, Liu T, Shen S. Aggressive quadrotor flight using dense visual-inertial fusion [C]. 2016 IEEE International Conference on Robotics and Automation (ICRA), IEEE, 2016: 1499-1506.
- [8] Usenko V, Engel J, Stückler J, et al. Direct visualinertial odometry with stereo cameras [C].2016

IEEE International Conference on Robotics and Automation (ICRA), IEEE, 2016: 1885-1892.

- [9] Huang A S, Bachrach A, Henry P, et al. Visual odometry and mapping for autonomous flight using an RGB-D camera [M]. Robotics Research. Springer, Cham, 2017: 235-252.
- [10] Shen S, Michael N, Kumar V. Autonomous indoor 3D exploration with a micro-aerial vehicle [C]. 2012 IEEE International Conference on Robotics and Automation, IEEE, 2012: 9-15.
- [11] Davison A J, Reid I D, Molton N D, et al. Mono-SLAM: Real-time single camera SLAM [J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2007 (6): 1052-1067.
- [12] Klein G, Murray D. Parallel tracking and mapping for small AR workspaces [C]. Proceedings of the 2007 6<sup>th</sup> IEEE and ACM International Symposium on Mixed and Augmented Reality, IEEE Computer Society, 2007: 1-10.
- [13] Forster C, Pizzoli M, Scaramuzza D. SVO: fast semi-direct monocular visual odometry [C].2014 IEEE International Conference on Robotics and Automation (ICRA), IEEE, 2014: 15-22.
- [14] Mur-Artal R, Tardós J D. ORB-SLAM2: An opensource slam system for monocular, stereo, and RGB-D cameras [J]. IEEE Transactions on Robotics, 2017, 33 (5): 1255-1262.
- [15] Mourikis A I, Roumeliotis S I. A multi-state constraint Kalman filter for vision-aided inertial navigation [C]. Proceedings 2007 IEEE International Conference on Robotics and Automation, IEEE, 2007: 3565-3572.
- Li P, Qin T, Hu B, et al. Monocular visual-inertial state estimation for mobile augmented reality [C].
  2017 IEEE International Symposium on Mixed and Augmented Reality (ISMAR), IEEE, 2017: 11-21.
- [17] 汪芳,朱少华,雷宏杰.基于卡尔曼滤波器的数字式
   捷联航姿系统算法设计[J].中国惯性技术学报,2008,16 (2):208-211.
- **引用格式:** 樊建彪,孙剑,樊欢欢,等.基于磁力计、IMU 和单目视觉的自主定位方法[J].宇航总体技术,2019,3(6): 39-45.
- Citation: Fan J B, Sun J, Fan H H, et al. A method of autonomous localization based on magnetometer, IMU, and monocular vision [J]. Astronautical Systems Engineering Technology, 2019, 3 (6): 39-45.