火箭协同优化中的气动代理模型研究

沈 丹,彭 博,李舟阳,宫宇昆,李平岐

(北京宇航系统工程研究所,北京 100076)

摘 要:随着运载火箭研发模式转变,快速迭代和协同优化设计成为主要发展方向,这就要求 作为小回路论证中重要一环的气动特性计算能够实现在线输出数据,亟需研究一种快速计算气 动特性的代理模型,代替耗时的 CFD 计算和风洞试验参与到总体优化设计中。综合比较多种快 速计算途径,选择高斯基 Kriging 插值和 BP 神经网络两种方法构建代理模型。使用脚本控制的 Cart3D 软件生成数值试验样本,样本点精度与 Fluent 软件计算误差小于 14%。通过样本点训 练、内参优化和加点策略,最终获得相对误差小于 10%的代理模型,能够实现给定外形参数在 线秒级输出气动数据,极大地推动了气动计算在总体论证中的作用。

关键词:运载火箭;总体优化;气动计算;代理模型 **中图分类号:** V421 **文献标识码:** A **文章编号:** 2096-4080 (2020) 05-0044-07

Research on Aerodynamic Surrogate Modeling for Launch Vehicle Collaborative Optimization

SHEN Dan, PENG Bo, LI Zhouyang, GONG Yukun, LI Pingqi

(Beijing Institute of Astronautical Systems Engineering, Beijing 100076, China)

Abstract: With the transformation of launch vehicle R&D mode, rapid iteration and collaborative optimization design have become a major trend for the research. This requires that aerodynamic characteristics calculation, which is an important part of the conceptual design, can supply real-time data online. Therefore, it is necessary to develop a surrogate model that can calculate aerodynamic characteristics rapidly, in place of time-consuming CFD methods and wind tunnel experiments for overall design optimization. This paper compared a variety of calculation methods comprehensively, and chose two methods: Gaussian Kriging interpolation and BPNN, to build a surrogate model. A script program was used to drive Cart3D to generate a set of numerical experiment samples. The relative error between the sample value and the result obtained by Fluent was less than 14%. Through sample point training, internal parameter optimization, and point addition strategies, a surrogate model with a relative error of less than 10% was finally obtained. It can output real-time aerodynamic characteristics data for a certain shape, which is significant for aerodynamic design to play its role in the overall design of launch vehicle.

Key words: Launch vehicle; Overall optimization; Aerodynamic calculation; Surrogate model

E-mail: shend _ journal@126. com

收稿日期: 2020-01-28; 修订日期: 2020-05-21

基金项目: 装备发展部领域基金 (6140246030216HT19001)

作者简介:沈丹(1986-),女,高级工程师,主要研究方向为运载火箭气动与热环境设计。

0 引言

随着运载火箭研发模式的转变,快速迭代和 协同优化设计成为主要发展方向。特别是在总体 小回路论证时,涉及弹道、气动和姿控等专业, 需要从大量构型中筛选可行方案,气动计算对整 个方案的设计有较大影响,为实现快速论证,需 要气动特性计算实现在线输出数据。而当前运载 火箭的气动特性主要依靠风洞试验和 CFD 仿真计 算得到,需要耗费较多的资源和时间周期,无法 满足快速论证和优化的需求,亟需研究一种快速 计算运载火箭气动特性的方法,这一过程对精度 要求相对较低,但对速度要求相对较高。

在 CFD 方法出现之前,运载火箭的气动设计 主要依靠工程算法。然而,工程算法基于无黏、 有势、小扰动等假设,因此对使用范围有严格的 限制。一般不单独使用某种公式来给出气动特性 数据,需要多种公式和修正手段复合求解,这些 复合的方法打包形成软件,例如著名的美国空军 DATCOM 软件包,在有翼导弹快速设计中发挥着 重要作用。然而,DATCOM 软件中没有适用于捆 绑助推器的复杂外形经验算法^[1-2],因此无法引入 到大型运载火箭的协同优化当中。

求解线化位流 PG 方程的面元法,只需要对飞 行器表面进行网格划分,建模复杂度较小,由于 面元法求解的是线性方程组,因此其计算速度很 快。当前较成熟和通用的面元法代码是 NASA 为 波音公司开发的 PANAIR^[3]。但由于线化位势方 程框架本身的假设,它不可处理跨声速情况,也 不适合用于处理黏性效应和气流分离显著的情况, 因此不适宜引入到大型运载火箭的协同优化当中。

近年来,随着多学科优化(Multidisciplinary Design Optimization, MDO)和气动外形优化 (Aerodynamic Shape Optimization, ASO)的发 展,选择近似的数学模型,将气动特性对外形参 数的响应看成黑箱问题,采用样本结果对黑箱问 题进行训练和辨识,进行气动特性分析的方法被 广泛采用,形成了多种类型的代理模型^[4]。本文 针对运载火箭外形变化的特点,对气动参数拟合 的代理模型进行研究。

1 代理模型构建途径

代理模型通过对若干采样样本 (不同的火箭

外形) 气动计算数据进行多次分析,得到对部分 或全部设计空间的模拟,从而得到气动隐式函数 模型的显式函数近似表达式,其流程如图 1 所示, 主要步骤为:

 1)确定设计变量 x₁, x₂, …, x_m, 确定设 计空间(设计变量的上下限)。对于运载火箭气动 计算,设计变量是标准火箭外形的一系列拓扑类 型和尺寸参数,设计空间为总体设计对火箭外形 的约束范围;

2) 试验设计,选择取样策略,确定每个设计 变量的水平数及样本点个数。在设计空间中确定 构造模型所用的样本点 \overline{X}^i ,其中 $\overline{X}^i = (x_1, x_2, \dots, x_m)$,是一个*m*维的空间点,对应着火箭外形 尺寸的*m*个变量;

3)本文针对气动计算外形需要进行前处理操
 作,即生成几何模型并划分空间网格;

4) 利用数值试验的方法确定在样本点 x^{i} 处的 系统响应值 y^{i} , 并利用它们构成一系列样本对 $\{(x^{i}, y^{i}), i = 1, 2, ..., m\}$, 其中 $y^{i} = (y_{1}, y_{2}, ..., y_{q})$, 是一个 q 维响应值,针对火箭气动 特性, y^{i} 指升力系数、阻力系数、压心系数等期 望得到的计算结果;

5)选取一部分样本对做为训练样本,采用适 当的近似方法构建代理模型,确定代理模型 f(xⁱ) 的参数,使 f(xⁱ) 与 yⁱ 近似程度最好,剩余样本 用做检验模型精度。如模型预测精度满足设计要 求则结束,否则修改模型参数或者增加样本,直 到其预测精度满足要求为止。

Fig. 1 Construction approach of surrogate model

2 设计空间

大型运载火箭一般采取捆绑助推器的构型, 我国现役和在研的运载火箭往往采用2个或4个助 推器,本文示例的是四助推器的构型,如图2所 示。图中的参数和尺寸充分且唯一地定义了火箭 的气动外形。按照经验将头部锥角和捆绑缝隙宽 度固定为常值,其余 16 个设计变量变化取值,构 成不同的火箭外形。因此本文中的设计空间是 16 维的高维空间。

RF-整流罩球头半径; L1-头部第一锥长度 (到实际尖点); A1-头部第一锥锥角; L2-头部第二锥长度; A2-头部第二锥锥角;
LF-头部直筒段长度; DF-直径; L3-头部倒锥长度; LC1-芯级直筒一长度; DC1-直径; L4-芯级过渡段长度;
LC2-芯级直筒二长度; DC2-直径; RZ-助推球头半径; LZ-助推顶点/全箭顶点距离; LZ1-助推第一锥长度 (到助推顶点);
AZ1-助推第一锥锥角; LZ2-助推柱段长度; DD-助推直径; H-芯助缝隙; BB-尾翼弦长

图 2 设计变量释义

根据总体设计各专业经验,形成如下约束条件,最终形成设计空间:

1) 芯级直径大于助推直径;

2) 整流罩直径与相邻芯级直径比范围:1~
 1.6;

3)相邻芯级直径比例(芯级下段直径除以上段直径):1~1.5;

4) 助推器长度与全箭总长的比例: 25%~65%。

3 试验设计

试验设计(Design of Experiments, DOE)为 代理模型构建提供训练和测试样本,其合理与否 关系到代理模型的预测精度,采样样本点要尽量 充满整个空间,应该是整个设计空间的具有代表 意义的典型子集,具有良好的均匀性和正交性。 由于本文中的设计空间是 16 维的高维空间,采用 拉丁超立方试验更为适宜。拉丁超立方试验设计 是专门为仿真试验提出的一种试验设计类型。它 是一种充满空间的设计,使输入组合相对均匀地 填满整个试验区间,并且每个变量只水平使用一 次。拉丁超立法试验设计具有非常好的空间填充 能力,可以拟合非线性相应,即较正交试验设计 而言,可以用同样的点数研究更多的数据组合^[5]。

假设设计问题共有 r 个因子,每个因子分为 n 个间距,每个间距里面取一个值,则每个因子有 n 个水平值,拉丁方设计表是有 r 个因子的 n 个水平 值组成的一个 n × r 矩阵,算法可用下式描述

$$x_{j}^{(i)} = \frac{\pi_{j}^{(i)} + U_{j}^{(i)}}{k} \tag{1}$$

其中, $1 \leq j \leq n$, $1 \leq j \leq k$, $k \neq k$ 是水平数, $n \neq k$ 子个数, $U \neq K$ [0, 1]上的随机数, $\pi \neq k$ 序列 0, 1, …, k - 1的一个排列。下标 $j \neq k$ 因子索 引, 上标 (i)是水平索引。抽样时首先将[0, 1]区 间划分成 N 个互不重叠的子区间, 然后在每个子 区间中进行独立的随机抽样。

4 样本生成

为避免样本生成耗费过长的周期,同时保持 一定的工程应用精度,本文使用高精度无黏分析 软件 Cart3D 对飞行器进行气动特性分析。该软件 首先在全流场域生成各向尺寸一致的粗糙网格, 再根据模型结构在物面附近自动逐步加密得到尺 寸合适的流场网格,程序能通过定义网格区域及 网格密度,自动捕捉模型的几何特征,快速生成 笛卡尔网格(图3),极大地压缩网格生成时间, 最后求解 Euler 方程得到流场结果。该方法网格生 成效率高,流场求解速度快,能大大缩短计算时 间。为高效批量生成几何模型并划分网格,采用 程序控制的脚本模式运行上述过程。

图 3 样本生成中 Cart3D 计算网格 Fig. 3 Cart3D mesh

为验证 Cart3D 软件的计算精度,应用国内某型经典捆绑运载火箭标准外形使用 Cart3D 和 Fluent 软件分别开展计算并比较,结果如表 1 所示。针对标准外形,在各马赫数下 Cart3D 与 Fluent 的计算误差最大约 13.4% (升力系数, Ma= 3.0, 攻角 $a = 0^{\circ}$),平均误差在 10% 以内,可以 用于样本库的建立。

表 1 Cart3D 与 Fluent 结果相对误差 Tab. 1 Relative error between Cart3D and Fluent results

Ма	C_1	CMz	X_{cp}	Ma	C_1	CMz	X_{cp}
0.6	0.073 624	0.061 268	-0.03692	1.5	0.070 683	0.051 319	-0.032 24
0.8	0.051 915	0.051 703	-0.031 49	2.0	0.117 06	0.096 728	-0.022 42
0.9	0.007 124	-0.00606	-0.044 47	3.0	0.134 308	0.128 502	0.000 328
1.0	0.013 38	-0.044 84	-0.06719	5.0	0.094 685	0.101 424	0.010 703
1.2	0.045 764	0.028 801	-0.034 09	7.0	0.062 881	0.070 671	0.008 768
				平均值	0.067 142	0.053 952	-0.024 9
				(超过10%的标注为红色)			

5 模型研究

常用的代理模型有:多项式响应面模型、径向 基 RBF 插值模型、Kriging 模型、SVM 支持向量 机、BP 神经网络等,表2给出了上述几种近似模型 及其优缺点^[6]。由于本文研究的对象维度高、非线 性较强,要求拟合方法的鲁棒性较强,因此选用了 标准 Kriging 模型并使用 GA 遗传算法进行内参优 化。同时选用 BP 神经网络(30×2)作为对比学习 组,对 Kriging 结果进行对比评价。

表 2	基本代	理模型	适用	生比较
-----	-----	-----	----	-----

Tah 2	Annlicability	comparasion	of basic	surrogate	model
1 a.u. 4	Applicability	comparasion	of Dasic	surrogate	mouer

	优势	不足	关注点
响应面	构造简单、计算量小、收敛速度快	对多变量、非线性程度高的问题 精度差	
RBF	灵活性好、结构简单、鲁棒性好、 计算量也相对较少	对样本数量依赖程度高,所需样 本数量大	径向函数具有各向同性,需根据实际问题进 行选择
Kriging	应用广泛、模型具有鲁棒性、灵 活性、有成熟代码库供二次开发	Kriging 模型的预测精度依赖于参数选取,对样本数量依赖程度高, 所需样本数量大	训练样本数量应足够多,并且整齐、均匀
SVM	样本数量要求少、应用广泛,可 解决复杂非线性问题,适合样本点 数据存在噪声的情况	计算量略大,训练速度较慢	选择对非线性问题适应性强的核函数
神经网络	应用广泛,灵活性好,泛化能力强	有可能出现过学习的问题	权衡神经网络层数与近似能力之间的关系

5.1 Kriging-GA 模型

给定 n 个样本点 $S = [s^{(1)}, s^{(2)}, \dots, s^{(n)}]^T$, 其中 $s^{(i)}$ 16 维向量(火箭外形参数个数),对应的目 标函数值为 $Y = [y^{(1)}, y^{(2)}, \dots, y^{(n)}]^T$,其中 $y^{(i)}$ 是3维向量(升力系数、阻力系数、压心系数3个变量)。设计变量为x,对应的目标函数为y。

Kriging 模型由全局模型和局部偏差模型 构成^[7-8]

$$y = F(\beta, x) + z(x)$$
⁽²⁾

z(*x*)的协方差矩阵表明其局部偏离的程度, 形式如下

 $\operatorname{cov}(z(\omega), z(x)) = E[z(\omega)z(x)] = \sigma^2 R(\theta, \omega, x)$ (3)

式中, $R(\theta, \omega, x)$ 是表示任意两个样本点 x_i, x_j 之间的相关函数,这里采用高斯相关函数

$$R(x_{i}, x_{j}) = \prod_{k}^{n} \exp(-\theta_{k} | x_{k}^{i} - x_{k}^{j} |^{2}) \quad (4)$$

建立 y(x) 的近似响应 $\overline{y}(x)$ 关于观测点 x 的 表达式

$$\overline{y}(x) = \overline{\beta} + \mathbf{r}^{\mathrm{T}}(x)R^{-1}(y - F\overline{\beta})$$
(5)

 β 通过如下估计得出

$$\bar{\boldsymbol{\beta}} = (\boldsymbol{F}^{\mathrm{T}} R^{-1} F)^{-1} \boldsymbol{F}^{\mathrm{T}} R^{-1} Y$$
(6)

设 f(x) 为常量, β 简化为标量,对方差 σ^2 对数取负令其取得最大值

$$-\frac{n\ln(\sigma^2)+\ln|R(\theta)|}{2}$$

求解上式的非线性无约束优化问题,使用 MATLAB工具中的遗传算法 GA(Genetic Algorithm)对 16 维内参 $\theta_k(k=1, 2, \dots, k)$ 进行全 局寻优,从而得到最优插值的 Kriging 模型。 Kriging 模型可以在全局范围内提供对预估计值的 误差评估,如式(7)所示。由此可以获得模型预 测不确定性最大的位置^[9],并在该位置上添加新 的样本点。

$$\bar{s}(x) = \sigma \left[1 - \boldsymbol{\psi}^{\mathrm{T}} \boldsymbol{\Psi}^{\mathrm{T}} \boldsymbol{\psi} + \frac{1 - \boldsymbol{I}^{\mathrm{T}} \boldsymbol{\Psi}^{-1} \boldsymbol{\psi}}{\boldsymbol{I}^{\mathrm{T}} \boldsymbol{\Psi}^{-1} \boldsymbol{I}} \right] \quad (7)$$

在设计空间中随机取2000个外形参数,按上 式计算全局偏差,如图4所示。将均方误差0.02 作为红线,将红线之上的测试点进行标记,使用 Cart3D计算并加入到样本库中。

5.2 BPNN 模型

BP 神经网络(Back Propagation neural network, BPNN) 是众多神经网络算法中应用最为广 泛的一种,在人工神经网络的应用中,80%~ 90%的人工神经网络模型都是采用 BP 网络或者它 的变化形式^[10]。对于火箭气动特性而言,诸参数 具有高度非线性,因而拟合工具的非线性十分重 要。本文采用两个隐含层的结构,每层含 30 个节 点,如图 5 所示。

使用交叉验证方法^[11]对样本点进行检验,例 如针对四助推器在 Ma =1.5, a =4°这一个工况的 380个样本,每次取1个作为测试点,取剩余379 个点作为训练点,可以得到图6中的误差分布规 律,误差符合正态分布。但误差的分布范围很大, 个别点的误差高达100%~400%以上(红色圈 出),使用其余样本点训练得到的网络在这些点上 是无效的,由此可以推断这些样本点与其余样本 点具有较大差异,如果数值试验结果可信,则需 要在这些点周围增加样本。

在加点位置围绕其中心,以原值 50%为半径 的超球面作为加点空间,使用均匀试验设计进行 加点,对每个目标点周围以同种方式加 12个"卫 星点",将样本点规模扩充为 500 个。对加点后的 样本库再次进行交叉验证,误差分布如图 7 所示。 由此可见,加点之后的误差分布更为集中,标准 差减少 34%,加点效果明显。

5.3 结果分析

选取 490 个样本点作为训练组,按上述方法得 到对于气动特性的估计即升力系数、阻力系数、 压心系数(参考长度为样本的箭体长度,参考面

Fig. 7 Cross-validation error distribution after adding points

积为1 m²),选取另外10个作为评估组,则两种 方法的拟合值与期望值相比较如图8所示,可以看 出预测值较好地落在期望值上下两侧。

根据式(8)对平均相对误差(MRE)的定义, Kriging-GA方法和 BPNN方法得到的代理模型在 评估点集得到的误差如表3所示,可以看出 Kriging模型略优于 BPNN模型。

$$MRE = \frac{1}{n} \sum_{i=1}^{n} \left| \frac{f_i - \overline{f}}{f_i} \right|$$
(8)

表 3 各气动输出结果相对误差

Tab. 3 Relative error of output data

	$C_1 / \frac{0}{10}$	$C_{\rm d}/\%$	$X_{ m p}/\%$
Kriging-GA	7.78	8.62	4.11
BPNN	10.0	11.40	5.92

6 结论

代理模型作为保证一定精度条件下对复杂数 值模型的替代,在运载火箭总体协同优化中可发 挥重要的作用。本文探索了火箭气动计算代理模 型的完整过程,采用平均相对误差指标评估代理 模型的预测精度,评估结果表明:

1) 对于运载火箭外形变化引起气动特性变化 这类问题,在16维变量、500个样本点规模的特 定情况下,应用 Kriging 的误差小于 BPNN;

2)利用 Kriging 模型作为代理模型的方法可 满足工程需求,平均相对误差小于 10%。

参考文献

- [1] Vukelich S R,万音.导弹 DATCOM:用部件组合法预 计常规导弹的气动力[J]. 国外导弹与航天运载器, 1988(7):6-18.
- [2] 杨维维,陈小前,李晓斌,等.通用导弹气动力计算软件 DATCOM 的开发与校验[J].固体火箭技术,2006, 29(3):161-164.
- [3] Cenko A. PANAIR Applications to complex configurations[J]. Journal of Aircraft, 2012, 20(10):887-892.

- [4] 王丹.飞行器气动外形优化设计方法研究与应用[D]. 西安:西北工业大学,2015.
- [5] 项可风,吴启光.试验设计与数据分析[M].上海:上海 科学技术出版社,1989.
- [6] 朱雄峰.飞行器 MDO 代理模型理论与应用研究[D]. 北京:国防科学技术大学,2010.
- [7] Forrester A I J, Sóbester A, Keane A J. Engineering design via surrogate modelling: a practical guide[M].
 Wiley, 2008.
- [8] Krige D G. A statistical approach to some basic mine valuations problems on the Witwatersrand [J]. Journal of the Chemical, 1951, 52(6): 119-39.
- [9] Vapnik V N. The nature of statistical learning theory
 [M]. New York:Springer-Verlag Inc, 2000.
- [10] 陈明.MATLAB 神经网络原理与实例精解[M].北京: 清华大学出版社,2013.
- [11] 韩萌,丁剑.基于交叉验证的 3D 算法的改进与实现 [J].计算机工程与设计,2008,29(14):3738-3739.

引用格式: 沈丹, 彭博, 李舟阳,等. 火箭协同优化中的气动代理模型研究[J].宇航总体技术, 2020, 4(5): 44-50.

Citation: Shen D, Peng B, Li Z Y, et al. Research on aerodynamic surrogate modeling for launch vehicle collaborative optimization [J]. Astronautical Systems Engineering Technology, 2020, 4(5): 44-50.