盐雾环境下部段对接紧固件耐腐蚀性研究

卢松涛¹,刘立东¹,杨浩亮¹,邹士文², 郭 莹³,商显扬¹,张志博⁴,张程浩¹

(1.北京宇航系统工程研究所,北京 100076; 2.航天材料及工艺研究所,北京 100076;3.首都航天机械公司,北京 100076; 4.天津航天长征火箭制造有限公司,天津 300462)

摘 要:海洋盐雾大气环境下,结构直接暴露在大气环境中,可能会遭遇高温、高湿及雨淋等 环境条件。通过真实环境浸泡试验和暴露试验,验证在不同防水措施下的不同材料/表面处理的 紧固件耐腐蚀性能,并对试验中钛合金螺栓承载力偏低现象进行了分析。

关键词:盐雾环境;部段对接;紧固件;耐腐蚀性

中图分类号: TH131.1 文献标志码: A 文章编号: 2096-4080 (2018) 04-0059-06

Research on Corrosion Resistance of the Fastener on Connection Section Structure in Salt Fog

LU Songtao¹, LIU Lidong¹, YANG Haoliang¹, ZOU Shiwen², Guo Ying³, SHANG Xianyang¹, ZHANG Zhibo³, ZHANG Chenghao¹

(1. Beijing Institute of Astronautical Systems Engineering, Beijing 100076, China;

2. Aerospace Research Institute of Materials and Processing Technology, Beijing 100076, China;

3. Capital Aerospace Machinery Corporation, Beijing 100076, China;

4. Long March Launch Vehicle Manufacturing Co., Ltd, Tianjin 300462, China)

Abstract: In ocean salt fog atmosphere environment, the whole structure is exposed directly to open atmosphere, and may suffer environment conditions such as heat, humidity and rain etc. In this work, soaking and exposing experiments is carried out in a true environment at launch site, verifying the bearing corrosion function of fasteners to waterproof measure under different material and surface handles. And analysis on low loading phenomenon of titanium alloy bolts in the experiment is conducted.

Key words: Salt fog; Connection section structure; Fastener; Corrosion resistance

0 引言

在海洋盐雾大气环境中,结构直接暴露在大 气环境中,可能会遭遇高温、高湿及雨淋等环境 条件。高强度连接结构或者承载结构存在应力腐 蚀的风险。以往工程研制中主要关注电气设备的 防水防潮^[1-3],由于环境特点,有必要针对高强度 承载结构处紧固件开展结构腐蚀防护有效性验证 试验。本文主要针对部段对接用紧固件的腐蚀试 验情况进行分析,腐蚀试验分为浸泡试验和暴露 试验两部分,以验证在不同防水措施下的不同材 料/表面处理的紧固件耐腐蚀性能。

1 试验件状态

试验件按不同类别状态(各类材料/各类螺纹 直径/各类表面处理/各类热处理/有无醇酸清漆) 排列组合进行腐蚀试验,试验件装配状态见图1, 试验件各类别细分状态梳理如下:

1) 螺栓状态:

①材料: 30CrMnSiA (ML30CrMnSiA)、Ti-6Al-4V、GH4169、30CrMnSiNi2A 这 4 类螺栓/ 螺母开展。其中 30CrMnSiA 为车制工艺螺栓材 料, ML30CrMnSiA 为镦制工艺螺栓材料。

②螺纹直径: 30CrMnSiA (ML30CrMnSiA) 分为 M8 紧固件、M10 紧固件, 30CrMnSiNi2A 分 为 M10 紧固件、M24 紧固件,其余材料均为 M10 紧固件。

③表面处理: 30CrMnSiA (ML30CrMnSiA)的 M8 螺栓采用镀锌并铬酸钝化, M10 螺栓采用镀镉 并铬酸钝化或 flZnAl12 锌铝达克罗; Ti-6Al-4V 表 面处理包括"涂 MoS2+十六醇"、"喷涂铝+十六 醇"、"离子镀铝+十六醇"。GH4169 采用化学钝 化, 30CrMnSiNi2A 采用锌铬涂层或 flZnAl12 达 克罗。

④ 热处理: 30CrMnSiA (ML30CrMnSiA) 为 $\sigma_b = 1200 \pm 100$ Mpa或HRC: 32~38。Ti-6Al-4V为 $\sigma_b \ge 1100$ Mpa。GH4169为1300 $\leqslant \sigma_b \leqslant 1300$ Mpa, 30CrMnSiNi2A为HRC(洛氏硬度): 42~47。

2) 螺母状态:采用直径及材料相同的标准件。

3)防水密封垫:螺栓、螺母和夹持件间放置防水垫圈,材料为铝合金材料,该材料具有较高的可塑性、耐蚀性、导电性,适合作为密封垫圈。 需要说明的是,所有试验件状态均施加了防水密封圈作为基本的防水措施。

4) 夹持件:模拟端框采用铝制材料,并增加 表面阳极化。

5)防水涂层:醇酸清漆(未加稀料,采用 100%醇酸清漆,颜色略显淡黄色),螺栓、螺母 的表面安装前刷涂醇酸清漆,刷涂后静置24小时 后进行装配。形成组合体且施加力矩后,组合体 整体再次刷涂醇酸清漆。

6)紧固件力矩:为提高试验的载荷覆盖性,试验件安装力矩略大于实际施加力矩,具体为:M8 螺栓力矩为 20N • m, M10 螺栓力矩为 35N • m, M24 螺栓力矩为 230N • m。

2 腐蚀试验条件

2.1 试验条件

腐蚀试验包括真实环境浸泡试验和发射场真 实环境暴露试验。其中浸泡试验又包括真实雨水 和真实冷凝水两种状态,暴露试验分为冬季和夏 季真实环境暴露试验。其中冷凝水状态为考虑推 进剂加注后,物体表面温度低于环境露点温度时, 物体外壁将出现的结露现象。

2.1.1 真实环境浸泡试验条件

 1)浸泡溶剂为发射场实际环境条件下的雨水 /冷凝水;

- 2) 试验时保持恒温 35±3℃;
- 3) 试验件要求完全浸泡在溶剂中;
- 4) 浸泡时间分为5个节点;
- 5) 每天更换雨水/冷凝水溶剂。
- 2.1.2 真实环境暴露试验条件
 - 1) 暴露时间段分为冬季和夏季试验;

2)试验件直接放置在发射场最真实的平台位置处;

- 3) 试验件直接暴露在真实的大气环境中;
- 4) 暴露时间分为3个节点。

Fig. 1 Schematic figure of soaking-in-rain test

2.2 试验水样成分

试验水样共分3批采集,冷凝水、雨水水样试验前后分析结果可归纳为:氯离子、硫酸根离子,它们是溶剂中起主要腐蚀作用的离子。氯离子、硫酸根离子浓度与溶剂pH没有正相关性。试验前后pH值没有明显变化,氯离子和硫酸根离子的浓度有变化,没有明显规律,但没有出现数量级的差异。以某批试验雨水数据为例,分析结果如表1 所示。

第	4	期	

双工 小件成力力仍 知术					
Tab. 1	Analysis	result of rain co	onstituents		
项目	pH 值	氯离子 / (mg/L)	硫酸根离子 / (mg/L)		
冷凝水原始	6.7	0.15	<0.05		
雨水原始	7.1	4.9	10.4		
雨水 浸泡 试验 后 (右侧各行 为不同试验状 态下分析结果)	7.0	14.2	7.3		
	7.1	5.4	13.9		
	7.1	14.3	5.9		
	7.1	5.2	10.0		
	7.0	13.9	5.6		
	7.0	5.5	11.0		

丰 1 水样成公公标结甲

2.3 紧固件拉断力测试

以 M10 紧固件为例,螺栓、螺母成组拉断, 测试力-位移曲线,拉断力测试采用 10t 拉力机, 拉断试验件工装见图 2。

图 2 M10 紧固件拉断试验件工装 Fig. 2 M10 fasteners stretching test craft equipment

3 腐蚀试验结果

以 M10 的 30CrMnSiA 浸泡试验为例,试验实物照片见图 3。拉断力测试结果见图 4,并以试验前试验件拉断力的±8%作为区间。不同浸泡时段的试验件均大于标准拉断力 (63.8kN),且在±8%的分析区间之内。

(a) 无表处,无醇酸清漆

(b) 镀镉并铬酸钝化, 无无醇酸清漆

(c) 镀镉并铬酸钝化,并涂无醇酸清漆

图 3 30CrMnSiA M10 紧固件浸泡试验后

Fig. 3 30CrMnSiA M10 after fasteners soaking test

在试验过程中曾发生由于试验工装刚度不足, 而造成 M10 钛合金 Ti-6Al-4V 紧固件拉断力偏低 的异常现象,具体分析见第4节。工装更换后,试 验数据恢复正常。

通过开展高强结构紧固件腐蚀试验,获取了 30CrMnSiA(ML30CrMnSiA)、GH4169、30CrMnSi-Ni2A和Ti-6Al-4V材料的高强结构紧固件在雨水中 浸泡168h和在暴露20d的试验数据,验证了不同 表面处理措施的抗腐蚀效果,验证了防护胶对产 品的保护效果(所有试验件均施加了铝制密封圈 作为基本防水措施)。 1)不同表面处理状态的 30CrMnSiA (ML30Cr-MnSiA)、GH4169、30CrMnSiNi2A 和 Ti-6Al-4V 材料的高强结构定力矩紧固件在雨水中浸泡 168h 和 在暴露 20d 后拉断力结果均符合许用标准,且试验前后的拉断力对比无明显变化。铝制密封圈可以 有效阻隔盐雾、雨水、冷凝水对螺栓/螺母承力结构的影响。

2) 30CrMnSiA、ML30CrMnSiA 和 30CrMn-SiN2A 材料本体在雨水环境和大气环境下的腐蚀 倾向性明显,镀锌/镀镉并铬酸钝化和 flZnAl12 (锌铝达克罗)表面处理可在一定程度上提升紧固 件耐蚀性,但仍不能避免点蚀发生,表面涂醇酸 清漆处理可以很好地保护紧固件本体。

3) GH4169 和 Ti-6Al-4V 材料本体在海南雨 水环境和海南大气环境下具有较强的耐蚀性。

4 钛合金拉断力异常情况分析

腐蚀试验中曾发生两种暴露试验后钛合金螺 钉拉断力偏低的现象,数值为49.2kN,51.3kN≪ 71.65kN(标准规定值),拉断曲线见图5。该现 象在工装更换为强度、刚度较好的工装后,钛合 金拉断力恢复正常。

30CrMnSiA 相对钛合金 Ti-6Al-4V 从拉断曲线 分析,存在明显的塑性变形区域,在旧工装存在局 部附加弯矩的情况下,能够通过变形协调更好地缓 解应力集中现场。同时,通过有限元分析,在同为 旧工装状态下,30CrMnSiA 螺栓相对钛合金 Ti-6Al-4V 螺栓,截面附加弯矩极值更小(为钛合金的 0.85倍),应变明显更大,且更加均匀(最大应变 为钛合金的2倍),应力超过1000Mpa的区域更小, 如图 6、图 7 所示。新旧工装具体参数见表 2。

表 2 工装及紧固件材料性能参数

Tab. 2	The material	parameters	of fasteners	and	craft	equipment
--------	--------------	------------	--------------	-----	-------	-----------

项目	材料	弹性模量 E/GPa	屈服强度 σs/MPa	拉伸强度 σb/MPa	延伸率δ
旧工装螺母加载框	30CrMnSiA	196	835	1080	0.06
旧工装螺母夹具	4Cr13	100 (理论)	359 (按 ob×0.7)	513 (按硬度折算)	0.25 (理论)
工装螺栓夹具	30CrMnSiA	196	835	1080	0.06
新工装螺母加载框	30CrMnSiA	196	835	1080	0.06
新工装螺母夹具	30CrMnSiA	196	835	1080	0.06
紧固件	TC4	109 (理论)	1025 (理论)	1100	0.14 (理论)

(a) 两件 30CrMnSiA 拉力-位移曲线 (拉断力均值 71kN)

图 5 紧固件拉力-位移曲线

Fig. 5 Fasteners load-displacement curve

图 6 旧工装-钛合金紧固件有限元分析

Fig. 6 Finite element analysis of titanium alloy fasteners by old craft equipment

该现象结合其他试验进行分析,100个 M10 钛合金 Ti-6Al-4V 整体对接端框弯矩试验和局部端 框 30CrMnSiA 单钉轴拉试验加载示意见图 8。在 100个钛合金 Ti-6Al-4V 整体端框弯矩试验中,以 及在局部端框 30CrMnSiA 单钉轴拉试验中,螺钉 拉断时刻对应的端框轴拉力比例,均在 1.35 附近, 也印证了钛合金 Ti-6Al-4V 相对 30CrMnSiA 对局 部弯矩更加敏感的特性。

5 结论

通过真实环境浸泡试验和暴露试验表明: 30CrMnSiA、ML30CrMnSiA和 30CrMnSiN2A 材料 本体在盐雾环境下的腐蚀倾向性明显,GH4169和 Ti-6Al-4V 材料本体在盐雾环境下有较强的耐蚀 性; 螺栓/螺母承力结构中施加铝 1035-O 密封圈 的试验状态下,4 类螺栓在腐蚀试验后承载力均满 足标准规定值,验证了总装防水措施的有效性, 涂覆醇酸清漆可以进一步避免表面点蚀现象的出 现。由于工装刚度较差且存在局部附加弯矩,试 验中出现了钛合金 Ti-6Al-4V 拉断力偏低现象,对 比相同工装下理论轴拉力相近的 30CrMnSiA 螺栓 的试验结果,得出了钛合金 Ti-6Al-4V 由于材料无 明显屈服延伸段,即材料强度高但缺乏韧性,对

(上接第51页)

受到外界干扰和自身灵敏度造成误差,导致试验 数据波动较大。

综上所述, 仿真结果和实验结果基本吻合, 若实验条件与仿真条件更为接近的话, 结果相似 度会更高。

5 结论

 本文所用的转角法拧紧螺栓并施加横向位 移载荷,进行的螺栓松动仿真分析结果与实验结 果基本吻合。

2)螺栓结构拧紧后的自松弛阶段,螺母螺纹
和螺栓螺纹相对滑动很小,此时预紧力的下降主
要是由螺纹牙底材料塑性变形引起的。

3)螺栓结构在拧紧时导致螺栓杆部扭转变 形,横向振动前期,螺栓连接结构支撑面之间首 先发生相对滑动,导致螺栓扭转变形回弹。但是 扭转变形回弹对预紧力的下降并没有直接影响。

4)提取了螺栓杆部扭转变形完全回弹的节点 (B点)。在B点之前,螺纹相对滑动很小,宏观 上更多地表现为螺母螺纹与螺栓螺纹共同回转, 此阶段预紧力的下降,主要是单次大循环载荷导 致螺纹牙底塑性变形和材料的棘轮效应引起的;B 点之后,螺母开始相对于螺栓回转,由螺母回转 造成预紧力的下降。

参考文献

- [1] 卜炎.螺纹联接设计与计算 [M].北京:高等教育 出版社,1995.
- [2] Junker G H. New criteria for self—loosening of fastener under vibration [J]. SAE, Transaction, 1969, 78: 314-335.
- [3] Jiang Y, Chang J. Mechanical properties of bolted joints [R]. Report No. 1 Prepared for Ford Motor

局部附加弯矩更加敏感的结论。

参考文献

- [1] 徐福成."长征三号"一、二级火箭的防潮、防水 [J].上海航天,1995(3):62-64.
- [2] 高智.运载火箭的"四防"措施和接地问题[J]. 导弹与航天运载技术,1995,216 (4):18-27.
- [3] 卢松涛.运载火箭防水防潮技术 [C].2014 年中国 宇航学会学术年会论文集,2014,367:372.

Company, 2000.

- [4] Pai N G, Hess D P. Three-dimensional finite element analysis of threaded fastener loosening due to dynamic shear load [J]. Engineering Failure Analysis, 2002, 9 (4): 383-402.
- [5] Izumi S, Kimura M, Sakai S. Small loosening of bolt-nut fastener due to micro bearing-surface slip: a finite element method study [J]. Journal of Solid Mechanics & Materials Engineering, 2007, 1 (11): 1374-1384.
- [6] Sanclemente J A, Hess D P. Parametric study of threaded fastener loosening due to cyclic transverse loads [J]. Engineering Failure Analysis, 2007, 14 (1): 239-249.
- [7] 庄茁. 基于 ABAQUS 的有限元分析和应用 [M]. 北京:清华大学出版社, 2009.
- [8] 廖日东.有限元法原理简明教程 [M].北京:北京 理工大学出版社,2009.
- [9] Housari B A, Nassar S A. Effect of Thread and Bearing Friction Coefficients on the Vibration-Induced Loosening of Threaded Fasteners [J]. Journal of Vibration & Acoustics, 2007, 129 (4): 484-494.
- [10] Pai N G, Hess D P. Experimental study of loosening of threaded fasteners due to dynamic shear loads [J]. Journal of Sound & Vibration, 2002, 253 (3): 585-602.
- [11] 刘朝英. 螺栓联接松脱分析 [J]. 现代机械, 2002, (1): 70-71.
- [12] GB/T 10431-2008. 紧固件横向振动试验方法 [S]. 中国国家标准化管理委员会, 2008.
- [13] 徐浩,王歲,马跃.螺栓联接蠕变松弛有限元分析[J].机械设计与制造,2013 (9): 39-41.
- [14] 山本晃.螺纹联接的理论与计算 [M].郭可谦,等,译.上海:上海科学技术文献出版社,1984.